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SUMMARY 

A method of solution for the two-dimensional Navier-Stokes equations for incompressible flow past a cylinder is 
given in which the equation of continuity is solved by a step-by-step integration procedure at each stage of an 
iterative process. Thus the formulation involves the solution of one first-order and one second-order equation for 
the velocity components, together with the vorticity transport equation. The equations are solved numerically by 
h4-accurate methods in the case of steady flow past a circular cylinder in the Reynolds number range 10-100. 
Results are in satisfactory agreement with recent h4-accurate calculations. An improved approximation to the 
boundary conditions at large distance is also considered. 
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1. INTRODUCTION 

In recent times there has been interest in the vorticity-velocity formulation for solving the Navier- 
Stokes equations as an alternative to the primitive variable method and, in two dimensions, to the 
vorticity-stream h c t i o n  approach. The basic principle of the formulation is to solve in some manner 
or other the equations which express the velocity components in terms of vorticity components, 
together with the set of equations which govern the vorticity components. At the same time the 
equation of continuity must be satisfied. For an incompressible fluid this equation is 

div v = 0, (1) 

where v is the velocity vector. The vorticity vector o is defined by 

o = c u r l v  

and it is easily deduced from the Navier-Stokes equations for incompressible fluids that 

am 
at 
- + (V * V)O - (0 .  V)V = R-'V20, (3) 

where t is an appropriately scaled time and R is a suitable Reynolds number. The last equation is the 
vorticity transport equation. 

Gatski' has recently reviewed the vorticity-velocity formulations in use and has identified three 
separate types of approach. All of them employ equation (3) to determine the vorticity, but they differ 
in the solution procedure for the velocity field. There are 
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(i) methods in which the velocity field is obtained in integral form from the vorticity field, as in 

(ii) methods where equations (1) and (2) are solved simultaneously or sequentially to determine v 

(iii) methods in which second-order equations are solved to determine the velocity components. For 

the work of Payne.' Wu3 and Wu and Thompson4 

from a given approximation to o, e.g. the work of Gatski et al? 

example, it is readily found from equations (1) and (2) that 

v2v = -curl 0, (4) 
which may be solved for v for a given o; early investigations of this type were carried out by 
Fase17-9 (see also the reference to the work of Fasel and co-workers in Reference 1); a similar 
method was given by Cook." 

In the present paper we discuss a method which does not strictly belong to any of the above classes 
but is in fact a combination of classes (ii) and (iii). We consider the problem of steady two-dimensional 
flow past a cylinder in which certain special features are apparent, notably concerned with the 
boundary conditions at large distance. In two dimensions there are only two velocity components and 
equation (3) reduces to a single scalar equation for the non-zero vorticity component. The present 
technique solves the vorticity transport equation by boundary value methods, assuming steady state 
flow. One of the velocity components is also determined by boundary value techniques from a second- 
order equation as in class (iii) above, but the other component is found by integrating the continuity 
equation (1) step-by-step outward from the cylinder surface. Using this method for the second velocity 
component, it is possible to obtain a solution which tends uniformly to the correct condition at large 
distance. 

The method is described for a cylinder of arbitrary cross-section mapped on to a semi-infinite strip 
by a suitable conformal transformation. Illustrative results are then computed for the case of a circular 
cylinder, using fourth-order finite difference methods to approximate the equations and considering 
Reynolds numbers in the range 10 6 R < 100. They are compared with the results of recent 
calculations by Dennis and Hudson" and other workers and found to be in good agreement. 

The formulation was first used by Hudson" for computing the flow past a sphere, although details 
of the method have not previously been published. 

2. BASIC EQUATIONS 

In general we apply a transformation of the form 

which places the cylinder at < = to. The transformation is assumed to be of Joukowslu type, in which 
the flow at large distances from the cylinder remains the same after transformation. Thus, if the 
cylinder is in a uniform stream parallel to the x-axis, we may assume 

x + iy = F(5 + iq), (5 )  

x - ket: cos (q + a), y - ket sin (q  + a) (6) 
as 5 + co and the flow reduces to a uniform stream at an angle a with the positive x-direction. 

The metric of the transformation is such that the equation of continuity (1) becomes 
a a - (Hu) + - (Hv) = 0, 
a5 atl 

where 

(7) 
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and equation (2), which defines the vorticity, becomes 

Using equation (7) to eliminate either u or v from (9) leads to 

a2 a2 a 
- (Hv) + - (Hv) = - ( H 2 0  at2 q2 a t  

and 

a2 a2 
- (Hu) + - (Hu) = - 
at2 at12 

respectively. Finally, for two-dimensional motion there is a streamhction $ which satisfies 

1 a* v = - - -  1 a* = -- 
H aq ’ H at 

and for steady motion the vorticity transport equation (3) becomes 

Given suitable boundary conditions, equations (lo), (1 1) and (13) could of course be solved 
simultaneously to give u, v and c. One possible objection to this approach is that only a differentiated 
form of the continuity equation is used rather than the equation itself. 

To overcome this objection, we propose that equation (7) be used to obtain u rather than equation 
(1 1). Another advantage of this approach is that, given v, it is possible to set up a stable step-by-step 
method to integrate (7) in the 5-direction, which leads uniformly to the necessary free stream condition 
for u. The latter feature makes the proposed formulation particularly appropriate for flow past a 
cylinder. In addition, as shown in the next section, satisfactory boundary conditions for v at large 
distance can also be derived. 

3. METHOD OF SOLUTION 

Using finite difference methods, equation (10) is solved as a boundary value problem at all points of 
the domain 

0 < ‘1 < 271, t o  < 5 < tm, (14) 

where t, is some large enough value of t at which the conditions as ( + co may be approximated. 
In general the boundary conditions for v are obtained from the periodic condition 

V ( L  0) = v ( t ,  0 + 2711, (15) 

v = O  o n ( = ( 0 ,  v = ~(t,,,, 0) on < = 5,. (16) 

u + ke‘ cos ‘1, v -+ keSsinq, (17) 

with 

For the type of transformation used, the conditions as t -+ 03 take the form 
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where k is a constant which depends upon the shape of the cylinder. Thus one possible condition for v 
on t = 5, is simply 

However, a better condition can be obtained as follows. It is convenient to introduce the perturbed 
velocity v*, where 

so that v* + 0 as 5 -+ co. Note that v* also satisfies equation (10). From the asymptotic theory of 
Oseen we known that a well-defined wake in which the vorticity is significant exists behind the 
cylinder and extends downstream. In the Cartesian plane this wake is expanding and with a roughly 
parabolic b~undary, '~  but in the present co-ordinate system it corresponds to a wake which n m w s  
near the co-ordinate curves q = 0, 271 with a breadth proportional to R-'"e-'/2'. Therefore, in this 
region, derivatives with respect to q are of the order R'/2e'f2r compared with those with respect to 5:. 
Thus, if we substitute (19) into (lo), we can neglect the second derivative of v* with respect to 5 as 
5 + co, giving 

v = kerm sin q. 

v = v* + ke5 sin?, 

(18) 

(19) 

at 5 = t,,,. Integrating this equation using the conditions 

v k = O  a t q = O , n  (21) 

gives the required expression for v; to be used as a boundary condition in the solution of equation 
(10). Thus the boundary condition for v* on t = C,,, comes from the equation itself by virtue of the fact 
that the equation becomes dominant in the q-direction. 

Equation (13) is also solved by finite difference methods in the region defined by (14). Boundary 
conditions for equation (1 3) come from a generalization of the procedure used by Dennis and ChangI4 
in solving the problem of flow past a circular cylinder. It is based on the Oseen linearization of (13) 
using the components (17) for u and v. The theory is essentially the same and so will not be repeated 
here. On the surface of the cylinder the vorticity is evaluated using the global procedures described by 
Dennis and Quartapelle." 

A step-by-step solution of equation (7) can be obtained if it is expressed in the form 

p =  1,2 ,..., m. 

Then, assuming that an approximation to v has been obtained throughout the field by solving equation 
(lo), we may determine u(5, q) from u(& q) by approximating the right-hand side of equation (22) 
using appropriate differentiation and integration formulae. Thus u(5, q) is obtained at all grid points by 
integration along each set of grid points for a constant value of q, repeating the procedure for each 
value of q. It may be noted that for the Joukowski type of transformation the integration (22) is stable 
as 5: + co, because H-e' as 5: -+ 03 and so H(t0, q)/H(tP, q)-e-(5p-50)< 1. Also, for a circular 
cylinder, H=e5  for all 5, and for an elliptic cylinder inclined at an angle o! to the stream, 
H= (cosh(25:) - cos 2(q+ Hence aH/a< > 0 for all 5 and so the integration (22) is always 
stable. 

The above procedures can be implemented in several ways. For example, one iteration of equation 
(10) could be followed by the integration (22) and the values of u and v obtained used in a single 
iteration of equation (13). This process would be repeated with the boundary values updated until 
convergence to the required accuracy was obtained. 
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4. FDJITE DIFFERENCE APPROXIMATION 

Equations (10) and (13) have the form 

Dennis and HudsonI6 have proposed a fourth-order finite difference method for a similar equation in 
which c(t, q ) = O .  This method can easily be extended to the present problem, giving a nine-point 
formula 

n=l  

where the subscripts &8 correspond respectively to the points (to, q0), (to + h, qo), (to, q0 + h), 
(50 - h, VO),  (50, rlo - h), (50 + h, vo + h), (50 - h, vo +A), (50 - h, vo - h) and (50 + h, qo - h) of a 
square grid of side h and 

do = 40 + 2h2(ai + bi) - 4h2[ (G)o+($)j + 8h2co, 

d q = 8 + 4 h b o + h 2  [ b ; - 2  (i3,1 - - - ; [ a o ( ~ ) ~ b o ( ~ ) o - ( V ~ b ) o ]  -h2(1  +;bO)c4 

: [ ($)o+(;)JT 

h2 
d5 = 2 - h(a0 +bo) +-uobo 2 -- 

h2 
d7 = 2 + h(a0 + bo) + -aobo - - 2 : [ (:)o+(;)j3 

This finite difference scheme was used to solve equations (1 0) and (1 3) in the illustrative example in 
the next section. To preserve the h4-accuracy, we used suitably accurate expressions for the derivative 
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a(Hv)/aq = 45, q) in equation (22). For the first step of the integration (p = 1) we used the fourth-order 
formula. 

u(k YI) = 4 0 ,  YI) - Wr(0, YI) + 19r(hj YI) - 542k '1) + r(3k ~)1/24hH(h, v ) ,  

@ = H(O, ?) /H(h,  q), 

(24) 
where 

and Simpson's rule for p = 2, 3, . . . , m. 

5. CALCULATED RESULTS 

The main objective of the present paper is to present a version of the vorticity-velocity formulation 
which is suitable for calculating flow past a cylinder. As a numerical example we consider the case of a 
circular cylinder for which good comparison results are known. For a circular cylinder the function 
F(t  +iq) in equation (5 )  is exp(< + iq) and H=e'. Equations (7), (10) and (13) then become 

and 

a u a v  -+ -+ u = 0, 
a5 a 

respectively, where R is the Reynolds number based on the diameter of the cylinder. These equations 
were solved for R =  10, 40 and 100 in the manner described in Section 3, using the finite difference 
approximations given in Section 4 for equations (26) and (27) and the formula 

u(tP) = e-[pu(O) - e-{P eT -d<, p = 1,2, . . . , m, f : 
corresponding to equations (22) to integrate (25). The conditions on v at large distance described in 
Section 3 become 

where 

For each value of R, solutions were obtained for various step lengths and with t,,, 2 n. In each case 
convergence was assumed when 

where, typically, E = 0.001, k is an iteration count and the summations cover all the nodes in the 
domain defined in (1 4). 
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Table I. Calculated properties of numerical solutions and comparison with other results 

Dennis and Hudson" 10 d40  1.217 1.555 2.772 -0.684 1.478 
Present results 1-216 1-556 2.772 -0.687 1.478 
Dennis and Hudson" 71/60 1.213 1.550 2.763 -0.680 1.477 
Present results 1-223 1.561 2.784 -0.691 1.479 

Dennis and Hudson" 40 71/40 0.525 0.977 1.502 -0.47 1.143 
Present results 0.523 0.985 1.508 -0.49 1.143 
Dennis and Hudson" 71/60 0.523 0.985 1.508 -0.43 1.142 
Present results 0.519 0.988 1.507 -0.49 1.142 
Fomberg17 - - - 1.498 -0.46 1.140 

Dennis and Hudson" 100 d40  0.281 0.687 0.968 -0.28 1.060 
Present results 0.284 0.727 1.011 -0.35 1.060 
Dennis and Hudson" n/60 0.287 0.766 1.053 -0.38 1.060 
Present results 0.287 0.775 1.062 -0.41 1.060 
FombergI7 - - - 1.050 -0.34 1.064 

Illustrative results for the drag coefficients (CF and Cp) and the pressure on the cylinder surface at 
y~ = 0, n are given in Table I, where they are compared with other results. Those of Dennis and 
Hudson' ' were obtained by solving the stream function and vorticity equations by fourth-order finite 
difference methods with the same vorticity boundary conditions as in the present study. Those of 
Fomberg" are included as an independent check. Bearing in mind the difficulties associated with 
calculating Cp and p(0) accurately, the present results are in satisfactory agreement and illustrate that 
the proposed formulation is indeed suitable for calculating the flow past a cylinder. 

As mentioned in Section 2, one theoretical advantage of calculating u from equation (7) rather than 
from equation (1 1) is that the continuity equation itself will be satisfied rather than a differentiated 
form of it. To test this theory, an additional solution for R = 40 with h = d 4 0  was computed using the 
appropriate form of equation (1 l), namely 

a2u a2u au a i  -+-+ 2-+ u -&- = 0, at2 av12 a t  av 
in place of equation (25). Note that equation (3 1) has the same form as equation (23) and so the fourth- 
order method of Section 4 was again applied. In this case, conditions for u at large distance were 
obtained from a simple modification of equation (29), namely 

The value ofp in this equation is somewhat arbitrary, but setting p = m - 2 allows the use of Simpson's 
rule to estimate the integral accurately. 

From each solution at R = 40 the quantity 

was calculated, with the summation extending to all points (ti, qj) in the region described by (14). It 
was found that C = 0.19 when u was obtained from (25) but C = 9.72 when u was obtained from (3 1) 
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Table 11. See text 
~ ~ ~~~~ 

u calculated from Surface vorticity C (continuity) Number of iterations CPU time (s) 
calculated from 

Equation (7) Dennis and Quartapelle’’ 0.19 
Equation (1 1) Dennis and Q ~ a r t a p e l l e ’ ~  9.72 

Equation (1 1) Equation (9) 1.23 
Equation (7) Equation (9) 0.20 

935 
2771 
1047 
284 1 

496 
1377 
207 
479 

and so the theory is supported. It is interesting to note that the total numbers of iterations required for 
convergence of the two solutions were 935 and 2771 respectively, requiring 496 and 1377 s of CPU 
time (on a 486/50 PC) respectively. Thus the proposed formulation is much the more efficient of the 
two considered. 

As an experiment the two computer programmes used above were modified so that the vorticity on 
the cylinder surface was computed using an h4-accurate finite difference approximation to equation (9) 
instead of the integral method of Dennis and Quartapelle.’’ Again the proposed formulation produced 
a lower value of C (0.20 versus 1.23) and required fewer iterations (1047 versus 2841) and much less 
CPU time (207 versus 479 s). For convenience these values are reproduced in Table 11. It may be noted 
from this table that the computational efficiency of the integral method of calculating the boundary 
vorticity is, as may be expected, less than that of the derivative method. Nevertheless, it is extremely 
valuable to have available both local and global methods. 

6. CONCLUSIONS 

A vorticity-velocity formulation for computing the flow past a cylinder is proposed in which one of 
the velocity components is obtained by integrating the equation of continuity rather than from a 
second-order equation related to it. Calculations for the case of a circular cylinder suggest that the 
proposed formulation gives satisfactory results and is more than twice as efficient as the alternative 
method considered. It also produced solutions which satisfy the equation of continuity more 
accurately. 
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